烘干機選用自主研發的三筒七層內循環螺旋可控溫度燃料鍋爐供熱;烘干機選用十層葉片s型循環傳動的方法烘干物料,自動化操控模塊主要由plc設備構成;提升機選用自行設計的帶有篩選、操控作物輸入流量的模塊和刺條皮帶式傳動帶。
烘干機
烘干室內流場散布的數學模型簡化
本文所研究的對象是鏈板式菌草烘干機烘干室內的溫度場散布問題,因而數值模仿區域定義為烘干室。由于空氣作為熱交換的介質對物料進行烘干,故考慮經過流場的模仿剖析得出溫度的散布。需求對烘干室內部結構進行一些合理的簡化,將進氣系統表明為進口(inlet )、排氣系統表明為出口(烘干機傳動部件和翻轉葉片設備對氣流的阻礙作用暫時不考慮,但是需求表明出鏈板式傳送帶和菌草厚度等關鍵結構。由于咱們需求的是烘干機平穩運行時的溫度場散布,故將此問題看作定常問題,在烘干室內氣流穿過菌草層時能夠使用fluent中的多孔介質模型完成計算。fluent中提供的多孔介質模型將多孔結構簡化為一個動量源,在樹立幾許模型時,能夠不必樹立復雜的幾許結構。
氣流在烘干機烘干室內的活動能夠看成是具有適當復雜性的湍流活動,家用烘干機,求解流場操控方程適當于對流場散布的數值模仿。由于流場的操控方程一般具有非線性的特征,因而有---利用離散的方法來求得近似解。
當烘干機內溫度傳感器檢測到烘房內的溫度小于設定的方針溫度,而且集熱器內的溫度傳感器檢測到的溫度大于烘房內溫度傳感器檢測到的烘房內溫度時,烘干機,控制器經過繼電器打開輔佐電加熱器和集熱器送風風機,給烘干機加溫,當烘房內溫度大于方針溫度+ 1℃ 時,控制器關閉輔佐電加熱器和集熱器送風風機。
當烘干機內溫度傳感器檢測到烘房內的溫度小于設定的方針溫度,可是集熱器內的溫度傳感器檢測到的溫度小于烘房內溫度傳感器檢測到的烘房內溫度時,控制器經過繼電器只打開輔佐電加熱器,給烘干房加溫。在溫度監控的同時,控制器對烘房內的相對濕度也進行監控,當烘干房內的濕度傳感器檢測到烘房內相對濕度大于方針相對濕度時,控制器開啟排濕風機,當烘房內的相對濕度小于方針相對濕度- 1%時,排濕風---閉。
烘干機溫濕度操控器選用瑞創多段溫濕度烘干操控儀,其運用嵌入式arm 技術,結合e. con總線操控系統軟硬件基礎。能夠收集4 路溫度信號、4 路濕度信號,飼料烘干機,操控3 路溝---道輸出,玫瑰花烘干機,3路直流通道輸出。可完成、高速的定時、模擬量溫濕度信號的輸入輸出操控。將物料干燥過程分為5 個溫濕度段,非常適合枸杞變溫變濕太陽能干燥設備;
其觸控操作界面簡單直觀,烘干機可完成溫濕度的實時監控; 可通過一路或多路溫度濕度信號和溝通/直流輸出通道形成獨立的溫度濕度操控系統。輸入信號可由多路溫濕度傳感器收集; 當采用多路溫度濕度信號時,取多路溫度濕度信號的平均值作為當時溫度濕度點進行操控。可完成干燥工藝的自在輸入存儲,并依據工藝參數設置,配合繼電器操控多個執行部件的行,完成對枸杞的多段式變溫變濕干燥。