烘干風(fēng)機(jī)四種不同結(jié)構(gòu)尺寸的半圓形軸縫。模擬和試驗(yàn)結(jié)果表明,軸向縫處理技術(shù)不僅能達(dá)到穩(wěn)定膨脹效果,而且能在設(shè)計(jì)速度下提率和壓力比。套管壁環(huán)對(duì)簡(jiǎn)單烘干風(fēng)機(jī)性能的影響。結(jié)果表明,環(huán)形結(jié)構(gòu)能有效地削弱葉頂間隙渦,甚至抑制其產(chǎn)生,有效地提高了風(fēng)機(jī)的總壓和效率。全冠、部分冠和加強(qiáng)型部分冠對(duì)烘干風(fēng)機(jī)氣動(dòng)性能的影響。結(jié)果表明,---烘干風(fēng)機(jī),部分冠形能削弱泄漏流和二次流的強(qiáng)度,與全冠形相比,部分冠形的效率提高了0.6%。satish koyyalamudi和nagpurwala[17]對(duì)離心式壓縮機(jī)的導(dǎo)葉進(jìn)行了處理。結(jié)果表明,改進(jìn)后的壓氣機(jī)峰值效率降低了0.8%~1%,失速裕度提高了18%,阻塞流量提高了9.5%。葉頂間隙形態(tài)的研究主要集中在離心式、軸流式壓縮機(jī)和渦輪上,而葉頂間隙形態(tài)對(duì)軸流風(fēng)機(jī)---是動(dòng)葉可調(diào)軸流風(fēng)機(jī)性能影響的研究相對(duì)較少。考慮到優(yōu)化葉頂間隙形狀可以有效地提高風(fēng)機(jī)的性能,對(duì)ob-84動(dòng)葉可調(diào)軸流風(fēng)機(jī)在均勻間隙、逐漸收縮和逐漸膨脹等六種非均勻間隙下的性能進(jìn)行了三維數(shù)值模擬。比較了不同葉尖間隙形狀下的內(nèi)部流動(dòng)特性、總壓分布和葉輪作用力,分析了漸縮型和漸擴(kuò)型。間隙對(duì)風(fēng)機(jī)性能影響的內(nèi)在機(jī)理。
介紹了一套高負(fù)荷烘干風(fēng)機(jī)的氣動(dòng)設(shè)計(jì)過(guò)程,包括參數(shù)選擇、葉片形狀優(yōu)化和三維葉片的設(shè)計(jì)思想。在此基礎(chǔ)上,完成了高負(fù)荷軸流風(fēng)機(jī)壓力比1.20的初步設(shè)計(jì),烘干風(fēng)機(jī),負(fù)荷系數(shù)---0.83。其次,在初步設(shè)計(jì)方案中,山東烘干風(fēng)機(jī),通過(guò)對(duì)烘干風(fēng)機(jī)靜葉多葉高處s1流面剖面的協(xié)調(diào)優(yōu)化,有效地減少了靜葉損失,提高了風(fēng)機(jī)的裕度。同時(shí),采用三維葉片技術(shù),提高了定子葉片的端部流動(dòng),提高了定子葉片端部區(qū)域的工作能力。風(fēng)機(jī)裕度由27.1%擴(kuò)大到48.8%。優(yōu)化葉頂間隙形狀可以有效地提高軸流風(fēng)機(jī)的性能。采用fluent軟件對(duì)ob-84動(dòng)葉可調(diào)軸流風(fēng)機(jī)在均勻和非均勻間隙下的性能進(jìn)行了數(shù)值模擬,討論了不同間隙形狀對(duì)泄漏流場(chǎng)和間隙損失分布的影響。結(jié)果表明,在平均葉頂間隙不變的前提下,錐形間隙風(fēng)機(jī)的總壓力和于均勻間隙風(fēng)機(jī),區(qū)范圍擴(kuò)大,錐形間隙越大,性能---越---;錐形間隙改變了間隙內(nèi)渦量場(chǎng)的分布,減少了葉尖泄漏損失,增強(qiáng)了烘干風(fēng)機(jī)葉片上、中部的功能力。風(fēng)機(jī)的性能低于均勻間隙的性能。錐形葉片的葉尖間隙形狀可以作為提高風(fēng)機(jī)性能的重要手段。
以烘干風(fēng)機(jī)帶后導(dǎo)葉的可調(diào)軸流風(fēng)機(jī)模型為研究對(duì)象,木材烘干風(fēng)機(jī),如圖1所示。風(fēng)扇由集熱器、活動(dòng)葉片、后導(dǎo)葉和擴(kuò)散器組成。風(fēng)機(jī)轉(zhuǎn)子葉片采用翼型結(jié)構(gòu),動(dòng)葉14片,導(dǎo)葉15片,葉輪直徑d為1500mm,烘干風(fēng)機(jī)葉頂間隙delta為4.5mm,風(fēng)機(jī)工作轉(zhuǎn)速為1200r/min,輪轂比為0.6,設(shè)計(jì)工況安裝角為32度,相應(yīng)設(shè)計(jì)流量和總壓為37.14m3_s-1和2348pa,結(jié)構(gòu)簡(jiǎn)圖給出了葉頂間隙均勻和不均勻的方程,其中前緣間隙和后緣間隙分別為1和2。leand te表示葉片的前緣和后緣。為了---前緣與后緣的平均間隙為4.5mm,選取六種非均勻間隙進(jìn)行分析。現(xiàn)代軸流風(fēng)機(jī)的相對(duì)徑向間隙為0.8%~1.5%[18],改變后風(fēng)機(jī)葉尖間隙的較小相對(duì)徑向間隙為1%,滿足正常運(yùn)行的要求,如表1所示。其-案1~3為漸變收縮型,方案4~6為漸變膨脹型。控制方程包括三態(tài)雷諾時(shí)均n-s方程和可實(shí)現(xiàn)的k-e湍流模型。可實(shí)現(xiàn)的k-e模型可以有效地解決旋轉(zhuǎn)運(yùn)動(dòng)、邊界層流動(dòng)分離、強(qiáng)逆壓梯度、二次流和回流等問(wèn)題。烘干風(fēng)機(jī)采用分離隱式方法計(jì)算,壁面采用防滑邊界條件,壓力-速度耦合采用簡(jiǎn)單算法。采用二階逆風(fēng)法離散了與空間有關(guān)的對(duì)流項(xiàng)、擴(kuò)散項(xiàng)和湍流粘性系數(shù),忽略了重力和壁面粗糙度的影響。